Studieninhalte
Dich erwarten Studieninhalte, die den hohen Technisierungs- und Digitalisierungsgrad der modernen Produktion widerspiegeln:
- Kenntnisse rund um die Automatisierung und Vernetzung von Produktionsanlagen, der Auswertung von Sensoren und der Ansteuerung von Aktoren.
- Klassische Methoden der Mess-, Steuerungs- und Regelungstechnik
- Grundlagen der Produktionsinformatik mit Inhalten der Systemsimulation und des Software Engineering
- Ferndiagnose und Fernwartung
1. Semester
30 ECTS
Mathematik 1
Mathematik 1Lernergebnisse (learning outcomes) und Kompetenzen Nachdem das Modul erfolgreich absolviert wurde, …
Wissen und Verstehen
Einsatz, Anwendung und Erzeugung von Wissen
Kommunikation und Kooperation
Wissenschaftliches Selbstverständnis/ Professionalität
Inhalte
Teilnahmevoraussetzungen verpflichtend: keine empfohlen:
Prüfungsformen und Voraussetzungen für die Vergabe von Leistungspunkten Klausur (90 Minuten) | 5 ECTS |
Technische Mechanik 1
Technische Mechanik 1Lernergebnisse (learning outcomes) und Kompetenzen Nachdem das Modul erfolgreich absolviert wurde, können die Studierenden… sicher Maschinen und Komponenten unter primär statischer Belastung analysieren und berechnen. Reibungsphänomene zwischen den Teilen untereinander werden berücksichtigt. Wissen und Verstehen
Einsatz, Anwendung und Erzeugung von Wissen Nutzung und Transfer
Wissenschaftliche Innovation
Kommunikation und Kooperation
Wissenschaftliches Selbstverständnis/ Professionalität
Inhalte
Teilnahmevoraussetzungen verpflichtend: keine empfohlen: keine Prüfungsformen und Voraussetzungen für die Vergabe von Leistungspunkten Klausur (90 min) | 5 ECTS |
Fertigungstechnik
FertigungstechnikLernergebnisse (learning outcomes) und Kompetenzen Nachdem das Modul erfolgreich absolviert wurde, können die Studierenden… Wissen und Verstehen
Einsatz, Anwendung und Erzeugung von Wissen Nutzung und Transfer
Wissenschaftliche Innovation
Kommunikation und Kooperation
Wissenschaftliches Selbstverständnis/ Professionalität
Inhalte a) Vorlesung: Grundlagen zur Fertigungstechnik: Produktion als Wertschöpfungsprozess, Unternehmensziele, Kriterien bei der Auswahl von Fertigungsverfahren, erreichbare Genauigkeiten bei versch. Fertigungsverfahren, Material- und Energiebilanz bei versch. Fertigungsverfahren, Abläufe in der Produktion, Einteilung der Fertigungsverfahren, Allgemeintoleranzen und Passungsauswahl, Rauheit bei Oberflächen Herstellung von Eisen, Stahl und Nichteisenmetalle: Einteilung Werkstoffe, Roheisengewinnung im Hochofen, Verarbeitung des Roheisens zu Stahl, Stofffluss im Stahlwerk, Sauerstoffaufblas-Verfahren, Elektrostahl-Verfahren, Sekundarmetallurgie, Gewinnung von Aluminium Urformen: Einteilung der Hauptgruppe Urformen, Gießverfahren, Schwindung, Volumenänderung, Schrumpfung, Hohl- und Vollformgießen, Kernherstellung, Maskenformverfahren, Feingießen, Magnetformverfahren, Vakuumformverfahren, Schwerkraft- und Niederdruck-Kokillengießen, Druckgießen, Schleudergießen, Stranggießen, Gestaltungsrichtlinien bei Gusswerkstücken, Einsatzgebiete gebräuchlicher Form- und Gießverfahren, Urformen aus dem körnigen oder pulverförmigen Zustand, Urformen aus dem ionisierten Zustand, Galvanoformung, Rapid-Prototyping-Verfahren Umformen: Einteilung der Hauptgruppe Umformen, Walzen, Gesenkformen, Strangpressen, Fließpressen, Gleitziehen, Tiefziehen, Drücken, Streckziehen Trennen: Zerteilen, Spanen mit geometrisch bestimmten und unbestimmten Schneiden, Grundlagen Spanbildung, Schneidstoffe, Kühlschmierstoffe, Drehen, Fräsen, Bohren, Räumen, Schleifen, Honen, Läppen, Strahlspanen, Thermisches und chemisches Abtragen, Erodieren, Laserstrahlschneiden, Elektronenstrahlschneiden, Autogenes Brennschneiden, Plasmaschneiden, Ätzen, Thermisches Entgraten Fügen: Einteilung Fertigungsverfahren Fügen, Fügen durch Umformen, Fügen durch Schweißen, Fügen durch Löten, Fügen durch Kleben, Fertigungs- und montagegerechte Produktgestaltung Kunststoffverarbeitung: Chemische Zusammensetzung und Herstellung von Kunststoffen, Einteilung von Kunststoffen, Extrudieren, Blasformen, Spritzgießen, Pressen, Schäumen, Urformen faserverstärkte Formteile, Umformen von Kunststoffen Wirtschaftlichkeitsbetrachtungen bei der Auswahl von Fertigungsverfahren: Technologischer Variantenvergleich, Differenzierte Zuschlagskalkulation, Maschinenstundensatz, Kostenvergleichsrechnung, Rentabilitätsrechnung, Amortisationsrechnung, Sensitivitätsanalyse, Break-Even-Point, Nutzwertanalyse Beschichten: Beschichten aus dem flüssigen Zustand, Beschichten aus dem körnigen oder pulverförmigen Zustand, Beschichten aus dem gas- oder dampfförmigen Zustand, Beschichten aus dem ionisierten Zustand.
b) Labor: Labor für Umformtechnik: Aufbau, Funktionsweisen und Wirkprinzipien beim Walzen, Fließpressen, Rundkneten, Tiefziehen, Drücken, Abkanten, Zerteilen Labor für Zerspanung: Aufbau und Funktion einer konventionellen Drehmaschine und einer CNC-Drehmaschine, Schneidwerkzeuge beim Drehen, Spanformen, Spannmittel, Zerspanungskräfte, Winkel und Geschwindigkeitsvektoren beim Drehen, Aufbau und Funktion einer konventionellen und einer CNC-Fräsmaschine, Schneidwerkzeuge beim Fräsen, Spanformen, Bedeutung und Auswirkungen beim Gleich- und Gegenlauffräsen, Wirkprinzipien beim funkenerosiven Senken und Drahterodieren, Aufbau und Funktion einer Erodiermaschine, Additive Fertigung Labor für Kunststofftechnik: Aufbau, Funktionsweisen und Wirkprinzipien beim Spritzgießen, Extrudieren, Extrusionsblasformen, Thermoformen, Formpressen von Duroplasten Labor für Werkstoff- und Fügetechnik: Aufbau, Funktionsweisen und Wirkprinzipien beim Clinchen, Punktschweißen, Bolzenschweißen, Elektrodenschweißen, MAG, MIG, WIG, Plasmaschneiden Teilnahmevoraussetzungen verpflichtend: keine empfohlen: Vorpraktikum Prüfungsformen und Voraussetzungen für die Vergabe von Leistungspunkten
| 5 ECTS |
Angewandte Informatik 1
Angewandte Informatik 1Lernergebnisse und Kompetenzen Nachdem das Modul erfolgreich absolviert wurde, können die Studierenden… Wissen und Verstehen
Einsatz, Anwendung und Erzeugung von Wissen Nutzung und Transfer
Wissenschaftliche Innovation
Kommunikation und Kooperation
Wissenschaftliches Selbstverständnis/ Professionalität
Inhalte
Vorlesungen gepaart mit praktische Dozenten-gestützten und individuellen Übungen durch die Durchführung vielfältiger Programmieraufgaben
Teilnahmevoraussetzungen verpflichtend: keine empfohlen: keine Prüfungsformen und Voraussetzungen für die Vergabe von Leistungspunkten
| 5 ECTS |
Konstruktion 1
Konstruktion 1Lernergebnisse (learning outcomes) und Kompetenzen Nachdem das Modul erfolgreich absolviert wurde, können die Studierenden… Wissen und Verstehen
Einsatz, Anwendung und Erzeugung von Wissen Nutzung und Transfer
Wissenschaftliche Innovation
Kommunikation und Kooperation
Wissenschaftliches Selbstverständnis/ Professionalität
Inhalte
Teilnahmevoraussetzungen empfohlen: Vorpraktikum Prüfungsformen und Voraussetzungen für die Vergabe von Leistungspunkten a) und b) Gemeinsame Klausur - 90 Minuten (benotet) c) Hausarbeit: Entwurf (benotet)
| 5 ECTS |
Werkstofftechnik 1
Werkstofftechnik 1Lernergebnisse (learning outcomes) und Kompetenzen Nachdem das Modul erfolgreich absolviert wurde, können die Studierenden… Wissen und Verstehen
Einsatz, Anwendung und Erzeugung von Wissen
Kommunikation und Kooperation
Inhalte a) Metalle: Werkstoffgruppen, Aufbau der Materie, Bindungsarten, Kristallsysteme, Ideal-/Realkristall, Maßnahmen zur Festigkeitssteigerung, Kaltverfestigung, Diffusion, Erholung und Rekristallisation b) Kunststoffe: Bildung von Makromolekülen, Struktur und mechanisches Verhalten, elastisches/plastisches/viskoelastisches Materialverhalten, Thermoplaste, Elastomere, Duromere, Prüfung und Verarbeitungseigenschaften von Kunststoffen, Kristallbildung, Nachkristallisation, Strukturviskoses Fließverhalten, Einfluss von Füll-und Verstärkungsstoffen, Copolymerisation, Festigkeitssteigerung, thermische Stabilisierung c) Labor Werkstofftechnik 1. Härtemessung, Metallographie Metalle 2. Zug- und Druckversuche Metall, Kerbschlagbiegeversuch 3. Zugversuche Kunststoff 4. Erkennen von Kunststoffen Teilnahmevoraussetzungen - keine Prüfungsformen und Voraussetzungen für die Vergabe von Leistungspunkten a), b) Klausur (90 Minuten), benotet c) Anwesenheit, Labortest und/oder Bericht unbenotet | 5 ECTS |
2. Semester
30 ECTS
Mathematik 2
Mathematik 2Lernergebnisse (learning outcomes) und Kompetenzen Nachdem das Modul erfolgreich absolviert wurde, …
Wissen und Verstehen
Einsatz, Anwendung und Erzeugung von Wissen
Kommunikation und Kooperation
Wissenschaftliches Selbstverständnis / Professionalität
Inhalte
Teilnahmevoraussetzungen verpflichtend: keine empfohlen:
Prüfungsformen und Voraussetzungen für die Vergabe von Leistungspunkten Klausur (90 Minuten), benotet
| 5 ECTS |
Technische Mechanik 2
Technische Mechanik 2Lernergebnisse (learning outcomes) und Kompetenzen Nachdem das Modul erfolgreich absolviert wurde, können die Studierenden … Wissen und Verstehen
Einsatz, Anwendung und Erzeugung von Wissen Nutzung und Transfer
Wissenschaftliche Innovation
Kommunikation und Kooperation
Wissenschaftliches Selbstverständnis/Professionalität
Inhalte a) Vorlesung Festigkeitslehre 1
b) Vorlesung Kinematik
c) Labor Festigkeitslehre 1 (4 Laborübungen): z.B.
Teilnahmevoraussetzungen verpflichtend: - empfohlen: Mathematik 1, Werkstofftechnik 1, Technische Mechanik 1, Konstruktion 1 Prüfungsformen und Voraussetzungen für die Vergabe von Leistungspunkten a) Klausur (90 Min) (benotet) b) Studienarbeit (benotet) c) Eingangstests und Laborberichte | 5 ECTS |
Elektrotechnik
ElektrotechnikLernergebnisse (learning outcomes) und Kompetenzen Nachdem das Modul erfolgreich absolviert wurde, können die Studierenden… Wissen und Verstehen
Einsatz, Anwendung und Erzeugung von Wissen Nutzung und Transfer
Wissenschaftliche Innovation
Kommunikation und Kooperation
Wissenschaftliches Selbstverständnis / Professionalität
Inhalte Vorlesung: Elektrische Felder, Spannung, Strom, elektrischer Widerstand, Grundstromkreis, Ersatzspannungs- und Ersatzstromquelle, Widerstandsschaltungen, Netzwerkanalyse, Kapazitäten, Induktivitäten, Magnetische Felder, Lorentzkraft, Induktionsgesetz, Wechselstromlehre, Drehstrom Übung: Übungsaufgaben zu elektrotechnischen Problemstellungen rechnen, analysieren, simulieren und verstehen Labor: Anwendung grundlegender Gesetze für Gleich- und Wechselstrom, Bedienung und Einsatz von Multimeter und Oszilloskop, Aufbau elektrischer Schaltkreise Teilnahmevoraussetzungen verpflichtend: keine empfohlen: Mathematik 1 und Mathematik 2 Prüfungsformen und Voraussetzungen für die Vergabe von Leistungspunkten a) und b): Klausur 90 Min., benotet c) Testat, unbenotet
| 5 ECTS |
Angewandte Informatik 2
Angewandte Informatik 2Lernergebnisse (learning outcomes) und Kompetenzen Nachdem das Modul erfolgreich absolviert wurde, können die Studierenden… Wissen und Verstehen
Einsatz, Anwendung und Erzeugung von Wissen Nutzung und Transfer
Kommunikation und Kooperation
Wissenschaftliches Selbstverständnis/ Professionalität Inhalte a) Vorlesung:
b) Labor: Programmierübungen zum jeweiligen Vorlesungsstoff Teilnahmevoraussetzungen verpflichtend: keine empfohlen: keine Prüfungsformen und Voraussetzungen für die Vergabe von Leistungspunkten a) Klausur 90 Minuten (benotet) oder Studienleistung (benotet) b) Testat (unbenotet) für die erfolgreiche Teilnahme am Labor mit Bericht | 5 ECTS |
Informationstechnik
InformationstechnikVoraussetzungen: Gesamtziel: Inhalt: Prüfungsleistung/Studienleistung: | 5 ECTS |
Digitaltechnik
DigitaltechnikVoraussetzungen: Gesamtziel: Inhalt: Prüfungsleistung/Studienleistung: | 5 ECTS |
3. Semester
30 ECTS
Mathematik 3
Mathematik 3Lernergebnisse (learning outcomes) und Kompetenzen Nachdem das Modul erfolgreich absolviert wurde, …
Wissen und Verstehen
Einsatz, Anwendung und Erzeugung von Wissen
Kommunikation und Kooperation
Wissenschaftliches Selbstverständnis/ Professionalität
Inhalte
Teilnahmevoraussetzungen verpflichtend: keine empfohlen:
Prüfungsformen und Voraussetzungen für die Vergabe von Leistungspunkten Klausur (90 Minuten) | 5 ECTS |
Technische Mechanik 3
Technische Mechanik 3Lernergebnisse (learning outcomes) und Kompetenzen Nachdem das Modul erfolgreich absolviert wurde, können die Studierenden … sicher Maschinen und Komponenten unter dynamischer Belastung analysieren und berechnen. Sowohl die klassischen Berechnungsmethoden wie das Newtonsche Bewegungsgesetz in der Fassung nach d’Alembert, der Impuls- und der Drallsatz als auch die Energiemethode können angewendet werden. Die durch dynamische Belastungen entstehenden Schwingungen können mathematisch beschrieben und technisch bewertet werden. Wissen und Verstehen
Einsatz, Anwendung und Erzeugung von Wissen Nutzung und Transfer
Wissenschaftliche Innovation
Kommunikation und Kooperation
Wissenschaftliches Selbstverständnis/Professionalität
Inhalte Kinetik des Massenpunktes, Grundgesetz der Bewegung von Newton, Prinzip von d’Alembert, Arbeit, Leistung, Arbeitssatz, Energie, Energiesatz. Kinetik von starren Körpern bei Drehung um eine feste Achse, Massenträgheitsmomente, Drallsatz. Kinematik der ebenen Bewegung starrer Körper und von Getrieben – rechnerische und grafische Methoden. Kinetik der ebenen Bewegung starrer Körper, Ermittlung der Bewegungsgleichung, Energiemethoden. Punktmassestöße, ebener Scheibenstoß. Mechanische Schwingungen, Grundbegriffe, freie und erzwungene, gedämpfte und ungedämpfte Schwingungen mit einem Freiheitsgrad, freie Schwingungen von Systemen mit zwei Freiheitsgraden. Teilnahmevoraussetzungen verpflichtend: Zulassung zum 2. Studienabschnitt, Prüfung TM1 bestanden empfohlen: 1. Studienabschnitt abgeschlossen Prüfungsformen und Voraussetzungen für die Vergabe von Leistungspunkten Klausur (90 Minuten), benotet | 5 ECTS |
Steuerungstechnik
SteuerungstechnikLernergebnisse (learning outcomes) und Kompetenzen Nachdem das Modul erfolgreich absolviert wurde, können die Studierenden… Wissen und Verstehen
Einsatz, Anwendung und Erzeugung von Wissen Nutzung und Transfer
Kommunikation und Kooperation
Wissenschaftliches Selbstverständnis/ Professionalität
Inhalte a) Vorlesung Steuerungstechnik 1:
b) Labor Steuerungstechnik 1:
Teilnahmevoraussetzungen verpflichtend: keine - Zulassung zum zweiten Studienabschnitt empfohlen: Angewandte Informatik 1 und 2, Elektronik Prüfungsformen und Voraussetzungen für die Vergabe von Leistungspunkten a) Klausur- 90 Min., benotet | 5 ECTS |
Elektronik
ElektronikLernergebnisse (learning outcomes) und Kompetenzen Nachdem das Modul erfolgreich absolviert wurde, können die Studierenden… Wissen und Verstehen
Einsatz, Anwendung und Erzeugung von Wissen Nutzung und Transfer
Wissenschaftliche Innovation
Kommunikation und Kooperation
Wissenschaftliches Selbstverständnis/ Professionalität
Inhalte Vorlesung: Halbleiterbauelemente, Dioden, Thyristoren, Transistoren, Operationsverstärker, jeweils mit Grundschaltungen und Anwendungen, Grundlagen der Leistungselektronik, Pulsweitenmodulation (PWM), Simulationstool LTSPICE, Labor: Messungen elektrischer Signale an Elektronikschaltungen, AD- und DA-Wandler, Operationsverstärker, Digitalelektronik, Mikrocontrollerprogrammierung. Teilnahmevoraussetzungen Verpflichtend: keine empfohlen: Elektrotechnik, Angewandte Informatik 1 und 2 Prüfungsformen und Voraussetzungen für die Vergabe von Leistungspunkten Vorlesung: Klausur 90 Min, benotet Labor: Bericht und Abschlusstestat unbenotet | 5 ECTS |
Technische Informatik 1
Technische Informatik 1Voraussetzungen: Inhalte: a) Vorlesung:
b) Labor: Übungen zum Vorlesungsstoff Prüfungsleistung/Studienleistung: | 5 ECTS |
Signalverarbeitung
SignalverarbeitungVoraussetzungen: Inhalte: a) Einführung
Zeitkontinuierliche Signale
Zeitkontinuierliche Systeme
Zeitkontinuierliche Filter
Zeitdiskrete Signale
Zeitdiskrete Systeme
b) Laborversuche zu den Themen
Prüfung: a) Schriftliche Prüfung b) Erfolgreiche Bearbeitung aller Laborübungen mit ausführlicher selbständiger Vorbereitung. Das Modul wird benotet. Die Modulnote setzt sich aus den Noten der benoteten Teilmodule, gewichtet mit den zugeordneten Credits zusammen. Alle Teilmodule müssen bestanden sein | 5 ECTS |
4. Semester
30 ECTS
Steuerungstechnik 2
Steuerungstechnik 2Inhalte Projektierung vernetzter Steuerungssysteme
Programmierung vernetzter Steuerungssysteme
Sichere SPS HMI: Gestaltungsrichtlinien und Programmierung SPS-NC-Interface Maschinendatenerfassung (MDE)/Betriebsdatenerfassung (BDE)/Leitrechneranbindung:
b)
Prüfung a) Schriftliche Prüfung b) Erfolgreiche Bearbeitung der gestellten Aufgaben im Team mit Selbstkontrolle und Diskussion mit dem Dozenten | 5 ECTS |
Industrielle Kommunikationstechnik
Industrielle KommunikationstechnikInhalte a)
b)
Prüfung a) Schriftliche Prüfung (90min) b) Erfolgreiche Bearbeitung aller Laborübungen mit ausführlicher selbständiger Vorbereitung Das Modul wird benotet. Die Modulnote setzt sich aus den Noten der benoteten Teilmodule, gewichtet mit den zugeordneten Credits zusammen. Alle Teilmodule müssen bestanden sein | 5 ECTS |
Projekt 1
Projekt 1 | 5 ECTS |
Simulation und Regelung von Systemen
Simulation und Regelung von SystemenLernergebnisse (learning outcomes) und Kompetenzen Nachdem das Modul erfolgreich absolviert wurde, können die Studierenden… Wissen und Verstehen
Einsatz, Anwendung und Erzeugung von Wissen Nutzung und Transfer
Wissenschaftliche Innovation
Kommunikation und Kooperation
Wissenschaftliches Selbstverständnis/ Professionalität
Inhalte a) Vorlesung Regelungstechnik 1: Steuern und Regeln, Signalflussbild, Übertragungselemente, Lösung von DGL’s, LAPLACE-Transformation, Übertragungs- und Frequenzgangfunktion, Testfunktionen, Pol-Nullstellenplan, Stabilität von Regelkreisen, NYQUIST-Kriterium, BODE-Verfahren, Kaskadenregelung. b) Übungen Computer Aided Control Engineering 1 (CACE 1): Simulation mit MATLAB/Simulink, Rapid Control Prototyping. c) Labor Regelungstechnik 1: Identifikation von Streckenparametern. Auslegung, Berechnung und Aufbau eines Regelkreises mit verschiedenen Reglern. Modellierung einer Gleichstrommaschine. Auslegung, Aufbau und Berechnung eines Drehzahlreglers und eines Positionsreglers für den Gleichstrommotor. Kaskadenregelung eines Antriebs. Teilnahmevoraussetzungen verpflichtend: keine empfohlen: Mathematik 1 - 3, Steuerungstechnik, Elektronik Prüfungsformen und Voraussetzungen für die Vergabe von Leistungspunkten a) Klausur- 90 Min., benotet | 5 ECTS |
Technische Informatik 2
Technische Informatik 2 | 5 ECTS |
Mess- und Antriebstechnik
Mess- und AntriebstechnikLernergebnisse (learning outcomes) und Kompetenzen Nachdem das Modul erfolgreich absolviert wurde, können die Studierenden… Wissen und Verstehen
Einsatz, Anwendung und Erzeugung von Wissen Nutzung und Transfer
Wissenschaftliche Innovation
Kommunikation und Kooperation
Wissenschaftliches Selbstverständnis/ Professionalität
Inhalte Vorlesung Grundlagen Messtechnik: Grundlegende Begriffe und Methoden der Messtechnik und Sensorik, systematische und zufällige Messabweichungen, Beschreibung von Messeinrichtungen (Kennlinien), Messmittelfähigkeitsanalyse, Ausgleichsrechnung, Fehlerfortpflanzung, Aufbau von Messketten. Messen elektrischer Größen sowie ausgewählter physikalischen Größen wie z. B. Temperatur, Druck, Kraft, Volumenstrom Messbrücken Signalerfassung und -filterung, Signalformen, Frequenzanalyse, Fourier-Reihe, diskrete Fourier-Transformation (FFT). Vorlesung Antriebssysteme: Bewegungsgleichungen mit Einfluss von Trägheitsmomenten, Getriebewirkungsgrad und Getriebeübersetzung, Lastkennlinien von Arbeitsmaschinen mit Übungen. Dynamik-, Genauigkeit-, Leistungsbetrachtungen, typische Antriebssysteme wie Spindel/Mutter, Zahnstange/Ritzel, elektrische Motorprinzipien (Gleichstrom-, Synchron-, Asynchronmotoren, Linearmotoren, Schrittmotoren), Peripheriekomponenten (Bremsen, Drehgeber, Resolver), Leistungselektronik zum Betrieb verschiedener el. Motoren. Labor: Inkrementelle Wegmesssysteme, Linearsynchronmotor, Programmierung einer Sensorkennlinie Teilnahmevoraussetzungen verpflichtend empfohlen: Elektronik, Elektrotechnik, Mathematik, technische Mechanik Prüfungsformen und Voraussetzungen für die Vergabe von Leistungspunkten Klausur 90 Min. benotet | 5 ECTS |
5. Semester
30 ECTS
Praxissemester
PraxissemesterLernergebnisse und Kompetenzen Nachdem das Modul erfolgreich absolviert wurde, können die Studierenden… Wissen und Verstehen
Einsatz, Anwendung und Erzeugung von Wissen Nutzung und Transfer
Kommunikation und Kooperation
Wissenschaftliches Selbstverständnis/Professionalität
Inhalte a) Projektarbeit als technische Aufgabenstellung mit realem Hintergrund soweit möglich eigenständig durchführen und im Rahmen einer Organisation bearbeiten. Kennenlernen des Arbeitsalltages eines Ingenieurs und die Kommunikation in einem Unternehmen. Bewerbungsverfahren und Stellensuche als selbstständige Aufgabe durchführen. b) Kommunikation und Konfliktbewältigung, Ethik in der Technik, Gruppenübungen Teilnahmevoraussetzungen verpflichtend: Lehrplansemester 1-2 empfohlen: Lehrinhalte der Lehrplansemester 3 bis 4 Prüfungsformen und Voraussetzungen für die Vergabe von Leistungspunkten a) Praktikumsbericht (bewertet), organisatorische Auflagen (Meldung Stelle), Tätigkeitsnachweis über 100 Arbeitstage b) Blockveranstaltung; Testat; Tätigkeits-/Präsenznachweis (unbenotet) | 25 ECTS |
Qualitäts- und Kostenmanagement
Qualitäts- und KostenmanagementLernergebnisse und Kompetenzen Nachdem das Modul erfolgreich absolviert wurde, können die Studierenden… Wissen und Verstehen
Einsatz, Anwendung und Erzeugung von Wissen Nutzung und Transfer
Wissenschaftliche Innovation ----- Kommunikation und Kooperation ----- Wissenschaftliches Selbstverständnis/ Professionalität
Inhalte a) Vorlesung „Betriebswirtschaftslehre“: Grundlagen der Investitionsrechnung, Datenermittlung, Verfahren, nicht monetäre Faktoren, Grundlagen der Kostenrechnung, Entscheidungsrechnung, Marketing-Mix b) Vorlesung „Qualitätsmanagement“: Entwicklung des Qualitätswesens, Qualitätsphilosophien, gültige Qualitätsnormen, EFQM-Excellence-Modell, Werkzeuge; Teilnahmevoraussetzungen verpflichtend: Abschluss des ersten Studienabschnittes Prüfungsformen und Voraussetzungen für die Vergabe von Leistungspunkten a) Gemeinsame Klausur und/oder Studienarbeit (benotet) b) Gemeinsame Klausur und/oder Studienarbeit (benotet) | 5 ECTS |
6. Semester
30 ECTS
Wahlmodul 1
Wahlmodul 1 | 5 ECTS |
Wahlmodul 2
Wahlmodul 2 | 5 ECTS |
Wahlmodul 3
Wahlmodul 3 | 5 ECTS |
Modellbasierter Reglerentwurf
Modellbasierter ReglerentwurfVoraussetzungen: Inhalte:
b) Labor
Prüfungsleistung/Studienleistung: | 5 ECTS |
Projekt 2
Projekt 2 | 5 ECTS |
Software Engineering
Software EngineeringVoraussetzungen: Inhalte a)
b)
Prüfung a) Schriftliche Prüfung (90 Min) b) Erfolgreiche Bearbeitung aller Aufgaben des Labors Software Engineering im Team mit Bericht | 5 ECTS |
7. Semester
30 ECTS
Abschlussarbeit
AbschlussarbeitVoraussetzungen verpflichtend: Module der Semester 1 bis Semester 5 (Praktisches Studiensemester) empfohlen: Module des Semester 6 Ziele In der Abschlussarbeit zeigen die Studierenden, dass sie in der Lage sind, innerhalb eines vorgegebenen Zeitraums eine umfangreiche, herausfordernde, aktuelle Aufgabenstellungen ihres Studienfachs oder aus einem angrenzenden Fachgebieten sowohl in ihren fachlichen Einzelheiten als auch in den kompetenzübergreifenden gesellschaftlichen und/oder ethischen Zusammenhängen zu begreifen, mit ingenieurwissenschaftlichen und fachpraktischen Methoden selbstständig zu bearbeiten, die Ergebnisse in einer klar gegliederten, schriftlichen Abhandlung unter Einhaltung der Regel des wissenschaftlichen Schreibens darzustellen und in geeigneter Form mündlich zu präsentieren und im Rahmen einer Diskussion mit Fachleuten zu verteidigen (Kolloquium). Inhalte a), b): Das zweiteilige Modul Abschlussarbeit besteht aus einer schriftlichen Ausarbeitung (Bachelorarbeit) und einer Präsentation mit anschließender Diskussion/Verteidigung (Kolloquium). Gegenstand der beiden Modulteile ist die Lösung einer ingenieurwissenschaftlichen Aufgabenstellung, die in der Regel von den Studierenden selbst vorgeschlagen und vom Erstbetreuer der jeweiligen Abschlussarbeit unter Beachtung der Vorgaben der Studien- und Prüfungsordnung festgelegt wird. c) Im Focus der "Wissenschaftliche Vertiefung" steht die Vermittlung theoretischer Grundlagen für selbständiges wissenschaftliches Arbeiten unter Anleitung im Bereich Maschinenbau und in angrenzenden Fachgebieten. Beispielhafte Inhalte des Moduls sind die Vermittlung von:
Prüfung a) Schriftliche Ausarbeitung – Bachelorarbeit (benotet) b) Mündliche Prüfungsleistung (30 Minuten) (benotet) c) Mündliche Prüfungsleistung (30 Minuten) (benotet) | 25 ECTS |
Softskills
SoftskillsVoraussetzungen verpflichtend: keine empfohlen: keine Ziele Inhalt
Prüfung
| 5 ECTS |