Course Description

High Performance Computing

Keywords:	S: Parallel programming, algorithms and performance		
Audience:	Semester AIM1 and AIM2	Module number:	AIM 800 6618
Workload:	5 ECTS		150 h
divided into	Contact time		50 h
	Self-study		60 h
	Exam preparation		40 h
Course language:	English or German		
Modul responsibility:	Prof. DrIng. Rainer Keller		
Valid as if:	14.01.2021		

Recommended requirements:

Working knowledge programming C / C++

Desired learning outcome of this module:

Students are able to parallelize their own code for CPU and GPU using the various paradigms introduced for shared- and distributed memory systems. They are able to apply the programming paradigms to other code bases and have the practical experience to use the introduced tools.

Knowledge – professional competences

Students know:

- Foundations of parallel and concurrent applications:
 - Communication using fast network interconnects
 - Modern synchronization mechanisms
 - Pitfalls such as deadlocks, priority inversion, etc.
 - Tools, Technologies and frameworks for parallel programming,
- Architectural differences of CPUs, GPUs and other accelerators.

Skills – methodical competences

Students are able to:

- Judge on and choose strategies on parallelization techniques for software systems,
- Use various programming interfaces, such as OpenMP, MPI, OpenCL and OpenACC for GPU programming,
- Use parallel debugging tools,
- Do performance analysis on parallel systems.

Comprehensive competences

Students are able to

- Enhance the performance with the help of parallel programming,
- Detect and amend errors in parallel programs,
- Apply the knowledge to other fields and programming languages.

Contents:

- Introduction into parallel programming
- Parallel programming using threads & OpenMP and concurrent Code
- Parallel programming using MPI
- Parallel programming for GPUs using OpenCL and OpenACC
- Efficiency of parallel algorithms
- Performance analysis tools
- Parallel Debugging tools

Literature:

- David R. Butenhof: Programming with POSIX Threads, Addison-Wesley, ISBN 0201633922
- Paul Butcher: Seven Concurrency Models in Seven Weeks, The Pragmatic Programmer, ISBN 1937785653
- Georg Hager, Gerhard Wellein: Introduction to High Performance Computing for Scientists and Engineers. Chapman&Hall, ISBN 978-1439811924
- OpenMP specification
- MPI-Standard
- OpenCL Standard

Offered:

Every summer semester

Submodules and Assessment:

Type of instruction:	Lecture with exercises
Type of assessment:	Exam (90 minutes)
Hours per week:	4 SWS
Estimated student workload:	150 hours

Generation of the module grade:

Exam