Module Description Finite Element Analysis (FEA)

Name of module:	Finite Element Analysis (FEA)
Keywords:	Finite Element Method, ANSYS
Module number:	Not compulsory
Target groups:	3-7 semester exchange students
ECTS Credits:	4
Language of instructions:	English
Module owner:	Prof. DrIng. Carsten Block
Last update	17 January 2023

Extent of work (hours)

Workload	Contact hours	Self-Study	Exam Preparation
80	40	20	20

Prerequisites:	Basic courses in engineering mechanics and
	mathematics
Total target:	 Formulate, analyse, and verify mechanical
	system analysis problems using an industry
	standard finite element analysis (FEA) software
	Understand the structure and operation of a
	commercial FEA program (ANSYS)
	 Analyse deformations, forces, strains and
	stresses under a variety of loading conditions,
	including static and dynamic load cases
Module contents:	 Introduction to finite element analysis and
	ANSYS
	Data transfer from CAD to FEA
	 Modelling, meshing, applying loads and
	boundary conditions
	• Determination of displacements and stresses in
	beams, trusses and three-dimensional bodies
	 Validation and Verification in FEA
	Laboratory Work
	 Introduction to ANSYS Workbench
	 Application to example problems (beams,
	trusses, three-dimensional bodies)
	Group Project
	 Use of FEA to solve an engineering problem
	Documentation in a professional engineering
	report
Reference material:	Lecture notes
Offered:	Winter semester
Relevance for other study programmes:	Mechatronics

Submodules and assessments

Type of instruction/ form of learning:	Lectures, practices and project work
Duration:	12 weeks: September/October – December
Hours per week:	4
Aims, learning outcomes:	See above
Estimated student workload:	40
Type of Assessment:	in-class exercises; project work, graded
Number of participants:	Due to the limited number of participants, please register in advance by email to:
	kremena.daneva@hs-esslingen.de

