Module Description Computer Simulation in Automotive Engineering

Name of module:	Computer Simulation in Automotive Engineering
Keywords:	Dynamic systems simulation, MATLAB/ SIMULINK,
Module number:	Not compulsory
Target groups:	3-7 semester exchange students
ECTS Credits:	4
Language of instructions:	English
Module owner:	Prof. DrIng. Thomas Schirle
Last update:	17 January 2023

Extent of work (hours)

Workload	Contact hours	Self-Study	Exam Preparation
80	40	20	20

Prerequisites:	 Mathematics (desirable but not mandatory): 	
	solution of systems of linear ODEs, eigenvalues	
	and eigenvectors	
	 Engineering mechanics, linear vibration theory 	
	 Basic Computer programming (desirable but not 	
	mandatory): any programming language	
Total target:	 To understand basic concepts, strength and 	
	weaknesses of dynamic systems simulation in the	
	design process	
	• To apply software for programming and dynamic	
	system simulation (MATLAB/ SIMULINK)	
	 To gain insight into possible numerical effects 	
	and suitable solver methods	
Module contents:	Apply basic mathematical modeling techniques	
	 Learn about block oriented modeling 	
	 Translate the mathematical models into e.g. 	
	Matlab scripts and Simulink models.	
	 Learn about various numerical solution methods 	
	for nonlinear differential system equations.	
	• Get valuable practical experience by applying this	
	knowledge in multiple lab exercise projects	
	covering e.g. vertical car body dynamics,	
	automotive shock absorbers and active hydraulic	
	suspension systems with road profile preview.	
Reference material:	Lecture notes	
Offered:	Winter semester	
Relevance for other study programmes:	Electrical Engineering, Mechatronics	

Submodules and assessments

Type of instruction/ form of learning:	Lectures, practices and exam preparation
Duration:	12 weeks: September/October – December
Hours per week:	4
Aims, learning outcomes:	See above
Estimated student workload:	40
Type of Assessment:	Written Midterm and Final exam (2x 60 min) (graded)
Number of participants:	Due to the limited number of participants, please
	register in advance by email to:
	kremena.daneva@hs-esslingen.de